重大突破

南京地湖所对湖冰生消过程对溶解性有机物迁移转化的影响研究取得进展

  湖泊等内陆水体占全球两极冰盖以外陆地面积3.7%,每年承接、输移的碳通量可高达5.1 PgC yr-1,占地表年净固碳通量约70%。溶解性有机物(DOM)是湖泊天然有机质的主要赋存形态和活跃成分,DOM经微生物降解和光降解能释放大量小分子有机酸及碳氮磷等生源物质,支撑异养型微生物新陈代谢的同时也影响湖泊富营养化进程。北半球中高纬度湖泊及高山高原湖泊冬半年通常经历较长时间的冰层覆盖期,极圈以内湖泊每年冰层覆盖持续时间通常能超过200 d。湖冰向下生长过程中,一部分DOM从湖冰的冰晶生长前缘排出至下层水体中,另一部分DOM可能被裹挟滞留在冰层内,还有一部分DOM可能被絮凝并以颗粒态有机碳形式沉降至湖底。然而,湖冰生消过程中DOM在下层未封冻水体、上层湖冰及颗粒态形式中的分配机制以及DOM组成,尤其是分子组成分异特征及驱动机制尚不明朗。 

  鉴于此,中国科学院南京地理与湖泊研究所张运林研究员研究小组周永强副研究员等人联合瑞典乌普萨拉大学Lars J. Tranvik院士等,通过湖冰生成前后野外样品采集和实验室湖冰生成模拟实验对湖冰生消过程如何影响DOM在冰、水、颗粒物中的分配比例、组成及驱动机制展开系统研究。通过无冰期、冰层覆盖期开展野外不同溶解性有机碳(DOC)浓度梯度下湖水及湖冰等样品采集及室内湖冰生成模拟实验(图1),运用DOM光谱和高分辨率质谱(Orbitrap)等多种技术,分析了非冰期湖水、湖泊结冰后上层冰和下层不冻水中pH、电导率、颗粒态及溶解态碳氮等参数及DOM组成特征(图2)。 

  研究结果表明,在湖冰生成期间,芳香族DOM优先被排出至下层未冻结的水体中。在具有高DOC和高芳香性的褐色湖泊,DOM容易自冰晶生长前缘被排出汇聚至下层未冻结水体中(图3)。在湖冰冻结过程中,16.2±4.7%DOC被截留在上层湖冰中,81.3±5.7%DOC被排出到下层未冻结水体中,仅1.3±0.7%DOC絮凝为颗粒态有机碳沉入湖底。DOC在湖冰中的截留系数,即DOCice : DOCbefore与未冻结前湖水DOM芳香性水平呈显著反相关,与脂肪族占比呈显著正相关(图3;图4)。在气候变暖背景下,湖泊流域内营养盐及陆源DOM汇入量可能增加,湖内初级生产力亦将提高,这就意味着陆源输入的芳香性DOM及内源产生的脂肪族类DOM丰度均有可能上升。结冰过程可能导致排出的芳香性DOM及湖冰截留的DOM丰度同步上升。然而气候变暖将意味着冬半年大量湖冰消失,冰盖持续时间大幅缩短,从而大幅削弱湖冰生成过程对冰层内DOM的排出效应。 

  上述研究成果以Selective exclusion of aromatic organic carbon during lake ice formation为题,发表在Geophysical Research Letters上,文章通讯作者为周永强副研究员和Lars J. Tranvik院士,第一作者为周永强副研究员。该研究工作得到第三次新疆科考项目及第二次青藏科考项目、中国科学院青年创新促进会、研究所青年科学家小组等项目联合资助。 

  全文链接为:http://dx.doi.org/10.1029/2022GL101414 

1 2015-2020年北半球1-3月间湖泊冰盖出现频率(%)以及采样点位置放大图(红星表征湖泊野外样品采集点),不同DOC浓度梯度湖水样品湖冰生成实验装置及室内模拟实验。 

野外现场采样和湖水冻结模拟实验中电导率、pH、溶解性有机碳(DOC)、颗粒态有机碳(POC)、溶解性总氮(TDN)、颗粒态总氮(TPN)、DOM比紫外吸收(SUVA254),以及腐殖质类与蛋白质类组分的荧光强度之和的比率(Humic : Protein)在未封冻前、冰封后水和冰中变化特征。SUVA254和相对丰度加权后的DOM芳香性指数、氢碳摩尔比之间的关系。 

野外现场采样和湖水冰冻模拟实验中理化参数及DOM相关参数的湖冰截留系数Cice : Cbefore变化特征及DOCice : DOCbeforeDOM光学和质谱相关参数之间的关系。 

高分辨率质谱Orbitrap研究结果。冰层覆盖下层未冻结水和未冰封前湖水DOM质谱峰平均相对丰度差异比较(a);下层未冻结水和上层冰盖DOM质谱峰平均相对丰度差异比较(b);DOM质谱峰相对丰度与SUVA254及截留系数DOCice : DOCbefore对应的van-Krevelen图谱Spearman秩相关分析结果。 

版权所有 © 中国科学院南京分院 苏ICP备05004321号
网站标识码:bm48000014 京公网安备110402500047号
地  址:南京市北京东路39号 邮政编码:210008
联系电话:025-83367159 电子邮箱:office@njbas.ac.cn

南京分院
微信公众号